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Chapter 1. Literature Review 

 HUMAN-WILDLIFE INTERACTIONS 

In the last couple of centuries, human populations have been experiencing a massive 

boom. The world population is estimated to reach 9.7 billion by 2050 (Mahajan 2020). Much of 

this growth is occurring in urban areas, where more than 55% of the world's population currently 

resides (United Nations 2018, Mahajan 2020). As human populations grow, urban and rural areas 

are expected to expand, which exposes native ecosystems and wildlife in the surrounding 

landscapes to the effects of anthropogenic activity (Angel et al. 2011). Land development and 

urbanization are considered primary drivers in the biodiversity crisis. Land development 

introduces sensory pollutants and chemical toxins to natural environments, alters natural 

ecosystem processes, and causes habitat fragmentation, alteration, and eradication (Gehrt and 

Chelsvig 2003, Gehrt and Chelsvig 2004, Newbold et al. 2015, Senzaki et al. 2017). Developed 

landscapes alter plant and animal community compositions and experience higher rates of 

species declines, even in species considered to be widespread and adaptable to urbanization 

(Lintott et al. 2016, Mendes and Srbek-Araujo 2020). 

Currently, about 25% of the world’s population lives in cities with over one million 

residents (Korine et al. 2022), but the impacts of urbanization and land development are not 

limited to major cities. All urban landscapes differ from natural habitats in several ecologically 

significant ways (Gago et al. 2013, Lehrer et al. 2021). Cities introduce a variety of sensory 

pollutants like artificial light and anthropogenic noise, which can impact foraging activities, 

reproductive behavior, health, and sociality (Stone 2009, Bunkley et al. 2015, Shannon et al. 

2016, Senzaki et al. 2020, Lehrer et al. 2021). Infrastructure such as roads, buildings, and 

impervious surfaces supplant natural landscapes and cause fragmentation or eradication of 
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habitat (Senzaki et al. 2017). Fragmented habitats exhibit decreased food availability and limited 

movement for taxa (Lehrer et al. 2021) and support lower diversity levels of flora and fauna 

(Haddad et al. 2015, McKinney 2008). Additionally, urban landscapes may alter the 

physiological responses of various organisms (Korine et al. 2022).  

The effect of urbanization on wildlife is dependent on the specific traits of different 

organisms (McKinney 2006). Certain species of wildlife are highly sensitive to anthropogenic 

disturbances, which may prompt them to avoid urban areas. Other organisms display tolerance to 

anthropogenic land alterations and may thrive in urban habitats (Threlfall et al. 2011). The 

opportunistic nature, and behavioral or ecological adaptability, of an organism, may be tied to 

their survival and success in urban landscapes (Luniak 2004). For example, specialist organisms, 

which rely on specific habitats or diets, tend to have lower chances of success in urban 

environments compared to generalist species (McKinney 2008). An example of an increasingly 

common urban generalist is a coyote (Canis latrans). Their flexible diet and behavioral plasticity 

(Breck et al. 2019) make them much more successful in urban landscapes than specialists who 

require a specific diet and habitat that the urban landscape cannot provide. These differences in 

the adaptability of wildlife in urban landscapes often lead to altered community assemblages that 

disproportionately reflect their community structure in surrounding natural areas (Shochat et al. 

2006). Knowledge about species’ adaptability in urban environments, however, is currently 

limited (Voigt and Kingston 2016).  

The urban environment poses unique challenges and opportunities for many wildlife, but 

few types of animals are as associated with the urban environment as bats (Lintott et al. 2014). 

While some bats successfully exploit human resources, overall bat species richness and activity 

levels decrease in urban landscapes (Lane et al. 2006, Lintott et al. 2016). Morphological and 
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behavioral attributes of different bat species influence their ability to adapt to urban 

environments (Lintott et al. 2016). Bat response to urbanization likely falls on a spectrum of 

adaptability and is likely species-specific (Rodriguez-Aguilar et al. 2017). Currently, information 

is scarce on the species-level responses of bats to human-altered settings. Examining the 

individual adaptability of bat species to urban landscapes will enable us to recognize which 

species struggle the most with anthropogenic disturbances and allow us to develop species-

specific management responses to potentially mitigate conflicts (Linott et al. 2016).  

Bats pose a unique challenge when it comes to understanding their response to 

urbanization. All animals inhabit a three-dimensional world, but most mammals primarily use a 

horizontal plane. Bats, as aerial mammals, equally use a vertical component (Flores-Abreu et al. 

2014). How organisms use space in their environment impacts demography, competition, 

interspecific relationships, habitat use and selection, and behavior (Cooper et al. 2014) and is 

understudied in flying vertebrates apart from birds (Flores-Abreu et al. 2014). Mammals that are 

constrained to a terrestrial surface often have reduced mobility and are more likely to be 

physically influenced by topography and anthropogenic development (Davies and Asner 2014), 

but a bat's use of three-dimensional space may alter these impacts. The vertical spatial niche used 

by bats adds complexity to studying the impacts of urban factors in three-dimensional space 

(Gamez and Harris 2022). Bats also exhibit a high degree of diversity in-flight behavior, which 

impacts habitat use and foraging strategies, further impacting the complexity of studying bats in 

an urban landscape (Mednes and Srbek-Araujo 2020). The spatial ecology of flying animals has 

fundamental behavioral and ecological implications (Cooper et al. 2014) and the use of three-

dimensional space by bats in urban settings should be considered in future urban bat research and 

management.  
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URBAN FACTORS IMPACTING BAT PRESENCE 

Infrastructure  

           Urban infrastructure replaces natural habitat with anthropogenic land cover (Lehrer et al. 

2021). Natural landscapes are modified by replacing natural resources, like forests, with man-

made surfaces and structures. The presence of buildings and infrastructure impacts landscapes in 

both two-dimensional and three-dimensional space. In the two-dimensional space, urbanization 

replaces natural habitat with impervious surfaces and structural barriers. This alters the habitat 

availability, spatial configuration, and interconnectedness of the landscape and changes species 

assemblages (Gibb and Hochuli 2002, McKinney 2002, Geschke et al. 2018, Simkin et al. 2022). 

In the three-dimensional space, buildings create impervious clutter which may restrict bat 

movement across a landscape (Lehrer et al. 2021). The presence of buildings, however, may be 

beneficial for some bat species that use human structures for roosting. Bat use of human-made 

structures may be dependent on the type and composition of the structures (Lehrer et al. 2021). 

Other types of infrastructure, such as roads and highways, introduce direct mortal threats and 

busy roadways may restrict bat movement across landscapes (Abbott et al. 2012). Bridges and 

man-made tunnels may provide important foraging and roosting habitats for bats, but they can 

also be a source of disturbance that can impact bat behavior and habitat use (Adam and Hayes 

2000).  

 

Artificial Light 

The biological world heavily revolves around the natural alterations of night and day, and 

most organisms have evolved temporal cycles that impact behavior and physiology (Cravens et 

al. 2017). Artificial light at night (ALAN) is one of the most prominent environmental changes 
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associated with land development and urbanization as ALAN disrupts nocturnal ecosystems and 

natural light-associated biological processes in many organisms (Korine et al. 2022). 

Approximately 23% of the global land surface is exposed to ALAN, making it a substantial 

threat to the biodiversity crisis (Falchi 2016). The effect of ALAN on bats varies based on the 

species of bat and the type of light (Haddock 2019, Straka 2019) but has been known to alter 

behavior (Barre et al. 2021) and increase roost abandonment and spatial avoidance (Cravens et 

al. 2017). Many species restrict themselves solely to dark areas, but the behaviors and 

morphology of certain bats may make them more inclined to be “light-tolerant” despite the 

ecosystem-altering effects of ALAN (Acharya and Fenton 1999, Azam 2018, Haddock 2019). 

For example, while artificial light is associated with global declines in insect populations, lights 

can provide a foraging advantage for some bats due to the congregations of insects found around 

artificial light sources (Acharya and Fenton 1999, Azam 2018). In general, bats that are 

morphologically favored for fast flight are considered light-tolerant species (Rowse et al. 2016). 

In terms of prey items, moths are more commonly consumed under artificial light than other prey 

items, which directs the focus of the research on foraging in artificial lights to fast-flying, moth-

specialists like hoary and red bats (Arharya and Fenton 1992, Cravens et al. 2017).  

In general, most bats exhibit light-avoidant behaviors. Various myotids demonstrate 

decreased activity levels during periods when lights are lit and avoid areas of ALAN by up to 

50m from the lights, even ones at low luminance (Azam, 2018). Other bat species are known to 

delay emergence in the presence of ALAN, suggesting light affects a greater range of behaviors 

than just light avoidance (Stone 2009, Stone 2012). In Costa Rica, both fast and slow-flying bats 

in urban areas exhibited light avoidance behaviors and decreased activity in the presence of 

ALAN (Frank 2019). Even bat species considered to be “light-tolerant” may alter their 
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movements based on the presence of ALAN (Straka 2019). For example, Pipistrellus 

pipestrellus seemingly tolerates lighting in limited amounts, but individuals are more likely to 

seek tree cover to navigate in cities that are brightly lit (Hale 2015, Pauwels 2019). Solutions to 

mitigate the effects of artificial light on nocturnal ecosystems are complicated by the need for 

perceived human safety (Altringham and Kerth 2016). Bat-friendly lighting solutions should 

balance limiting the spectral intensity and spectra of LEDs at vertical illuminance while 

providing enough horizontal illuminance to benefit public safety (Altringham and Kerth 2016, 

Azam 2018).  

 

Anthropogenic soundscapes 

Many wildlife taxa are documented to show an aversion to anthropogenic noise (Bunkley 

et al. 2015). The effects of urban noise on bats are unclear and understudied even though bats 

primarily rely on auditory perception to experience their surroundings (Nagel 1974, Bunkley et 

al. 2015). As most bats use ultrasonic frequencies, bats may be tolerant of most urban noise 

under 15kHz (Hooten et al. 2022), but this has not been thoroughly studied in a city setting. 

Experimental studies, however, demonstrated that bats limit movement, alter echolocation 

behavior, and exhibit habitat avoidance in the presence of noise (Bunkley et al. 2015, Lehrer et 

al. 2021). Anthropogenic sound may mask prey-generated sound that gleaning bats use to hunt, 

making them unable to discern prey locations. Echolocation may also have a reduced range in 

the presence of anthropogenic noise (Buckley et al. 2015). Currently, the spatial variation of 

urban noise is unaccounted for in urban wildlife management (Parris et al. 2018).  

 

 



 12 

Human-altered waterways  

           Water is a major predictor of bat occupancy (Lehrer et al. 2021), with water availability, 

food availability and foraging space, and navigation being the primary drivers (Hayes and Loeb 

2007, Lehrer et al. 2021). While bat species activity tends to be higher near natural waterways, 

bats frequent man-made ponds, lakes, and pools in urban parks, golf courses, and residential 

neighborhoods (Lehrer et al. 2021). Bat’s use of man-made ponds and pools, however, is likely 

limited and having nearby natural waterways is preferential for bats. A close association exists 

between waterways and insectivorous bat species that prey upon emergent aquatic invertebrates 

(Kalcounis-Rueppell et al. 2007). Pollution and anthropogenic development alter community 

structures of invertebrates in waterways, which can impact the abundance and availability of 

insects for bats and other predators foraging in riparian zones (Bank et al. 2006, Kalcounis-

Rueppel et al. 2007). This relationship between anthropogenic impacts on aquatic 

macroinvertebrate community structure and habitats where bats may forage is extremely 

understudied (Kalcounis-Rueppell et al. 2007). As top predators that forage in both aquatic and 

terrestrial zones, bats may be a good model to study how macroinvertebrate community 

structure, because of anthropogenic activity, may impact higher trophic levels (Ballinger and 

Lake 2006). Considering the impacts of human alterations of natural waterways may be an 

essential part of bat management given the effects on drinking behaviors, foraging and 

navigational corridors, and food availability. 

 

BAT DIVERSITY  

With over 1,400 recognized species, bats account for about one-fifth of mammalian 

diversity. Bats, members of the order Chiroptera, exhibit high ecological and taxonomic diversity 
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and are the most widely distributed of all land mammals (Frick et al. 2020). There are currently 

around 20 recognized families of bats (Lei and Dong 2016) and they are found nearly 

everywhere on Earth except Antarctica and some remote islands (Schmidly 1991). Until recently, 

the order Chiroptera was split into two suborders, Megachiroptera and Microchiroptera, which 

were divided based on several noticeable differences between the two groups (Lei and Dong 

2016). Bats known to use echolocation in foraging and navigation were placed in the suborder 

Microchiroptera (Broders et al. 2004, Lei and Dong 2016) and the non-echolocating 

Megachiropterans, also known as “Old World bats,” were named partially for the large body size 

of some of the species in this group, which can reach a wingspan of up to 1.5 meters (Almeida et 

al. 2011). Recently, however, researchers proposed an alternative chiropteran classification based 

on updated morphological, genetic, and behavioral analysis of bats, with the two suborders now 

being titled Yinpterochiroptera and Yangochiroptera (Lei and Dong 2016). These recent 

classifications are not based on echolocation but on DNA analysis and the structure of the inner 

ear (Fenton 2022).  

The suborder Yinpterochiroptera consists of seven families of bats that occur in the Old 

World. This suborder includes the family Pteropodidae, which are the Old-World fruit bats, and 

six families of echolocating insectivores (Fenton 2022). Of the over 1,400 species of bats 

worldwide, there are 410 species currently classified as Yinpterochiropterans (Fenton 2022). 

Apart from genetics, a distinguishing feature of Yinpterochiropterans is the possession of a thick-

walled Rosenthal’s canal, which is a structure in the inner ear used for carrying nerves between 

the ear and the brain (Fenton 2022, Sulser et al. 2022). Thick-walled Rosenthal’s canals are 

associated with modern mammals (Fenton 2022) and are found in all other mammals except for 

Yangochiropteran bats (Sulser et al. 2022). Bats in the suborder Yangochiroptera make up about 
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80% of all echolocating bat species. There are 938 species in 14 different families and are found 

on every continent that has bats (Fenton 2022). Given the diversity in this group, 

Yangochiropterans exhibit a wide variety of behaviors, diets, habitat preferences, and foraging 

strategies. Yangochiropterans possess a wall-less Rosenthal’s canal, which accommodates more 

neuronal structures compared to a thick-walled Rosenthal’s canal and may coincide with a higher 

capacity for fine-tuned echolocation (Fenton 2022). For example, most Yangochiropterans utilize 

a frequency-modulated type of echolocation which uses short pulses of sound between longer 

intervals of silence (Sulser et al. 2022). While all Yangochiropterans exhibit the wall-less 

Rosenthal’s canal, the features of the spiral ganglion are highly variable across species in the 

Yangochiropteran suborder (Fenton 2022, Sulser et al. 2022). This variability may be a 

neuroanatomical evolutionary driver for the distinct lifestyle and echolocating strategies in this 

suborder (Sulser et al. 2022).  

The diversity of bat species differs between temperate and tropical regions. There are 

over twice as many mammal species in the tropics compared to temperate regions, likely due to 

the increased variety and availability of food sources (Fleming 1973). As a temperate region, 

North America exhibits a lower diversity of bats, with roughly 47 species of bats ranging across 

the United States and Canada (Fleming 1973). The highest diversity of bats found in the United 

States is in the southwestern states (Schmidly 1991). While overall bat species diversity is low in 

North America, bats exhibit a wide range of ecological and functional diversity (Stevens and 

Willig 2002). In the eastern United States, which is frequently delineated by what is east of the 

Mississippi River, there are roughly 20 species of bats. The state of Indiana has thirteen 

documented species of bats. All species, except one in the family Molossidae, are in the family 

Vespertilionidae, which is the largest and most widespread family in the order Chiroptera (Reid 
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2006). Six of these species are winter hibernators, four species are migratory and are found in 

Indiana during reproductive season, and three are uncommon species with limited records in the 

state. The nine most common species in central Indiana are the big brown bat (Eptesicus fuscus), 

eastern red bat (Lasiurus borealis), hoary bat (Lasiurus cinereus), silver-haired bat 

(Lasionycteris noctivigans), evening bat (Nycticeius humeralis), tri-colored bat (Perimyotis 

subflavus), little brown bat (Myotis lucifugus), Indiana bat (Myotis sodalis), and northern long-

eared bat (Myotis septentrionalis). Apart from Eptesicus fuscus, all these species are listed as 

state endangered or of special concern (DNR 2023).  

 

THREATS FACED BY BATS 

In the past couple of decades, bats have suffered population declines due to numerous 

conservation challenges. Currently, the most prominent threats to bats include wind-energy 

development, the spread of white-nose syndrome, and habitat loss and degradation (Browning et 

al. 2021). The combination of these threats is causing sudden and simultaneous population 

declines for insectivorous bats on a scale rivaled by few recorded ecological events (Boyles et al. 

2011). The threats faced by bats are particularly urgent due to the unique life history of bats. 

Most bats produce a single pup each year, exhibit a slow rate of fetal growth, and have a long life 

span (Nowak 1994). Due to this, bats recover slowly from increased mortality rates (Voigt and 

Kingston 2016, Schmidly 1991), and the impacts of these losses are predicted to be felt for 

centuries.  

White-nose syndrome (WNS) is an infectious disease caused by a fungus known 

as Psuedogymnoascus destructans and has been the cause of the deaths of over seven million 

bats in North America since February 2006 (Boyles et al. 2011). P. destructans opportunistically 
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infects the skin of bats during hibernation, which triggers frequent arousal and a cascade of 

physiological disturbances, which can lead to a fatal depletion in energy reserves (Frick et al. 

2010, Boyles et al. 2011, Verant et al. 2014). There are about a dozen species of bats known to 

contract WNS, and five species are exhibiting severe population declines of up to 90% (Auteri 

and Knowles 2020). Species that roost in mass aggregations are also uniquely vulnerable, due to 

large percentages of populations being in close proximity (Schmidly 1991). 

Wind energy, one of the fast-growing renewable energy sources (Jensen 2018), is a major 

threat to several species of migratory bats. Bats are being killed at unprecedented rates from 

direct collisions with wind turbine blades (Boyles et al. 2011, Erickson et al. 2016). At-risk 

species include tree-dwelling migratory bats, such as Lasiurus borealis and Lasiurus cinereus, 

and seasonal hibernacula migrators, such as Myotis sodalis (Erickson et al. 2016). Mortalities 

from wind turbine-related energy have the potential to cause severe population-level impact on 

migratory bats (Baerwald and Barclay 2011, Hale et al. 2021). For example, current model trends 

suggest that hoary bat populations could be decimated by 50% by 2028 due to wind energy 

development (Friedenburg and Frick 2021). A further complication is that the bats most 

susceptible to growing wind energy threats are often some of the most poorly censused 

(Cornman et al. 2021). 

Bats are essential to the health of a functional ecosystem (Cable et al. 2021). The 

cumulative loss of millions of bats is not only an ecological disaster but has substantial 

consequences for humans (Boyles et al. 2011). Bats provide large-scale monetary benefits to the 

agriculture industry (Voigt and Kingston 2016). It has been estimated that the loss of North 

American bats alone could lead to up to $3.7 billion per year in agricultural losses (Boyles et al. 

2011). Bats are also the source of important scientific advancements for humans in the medical 
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industry and in sonar research. Given the importance of bats, worldwide trends in bat decline 

have massive negative implications for humans and ecosystem balance.  

 

BIOACOUSTICS AND ECHOLOCATION 

Properties of echolocation 

           Sensory systems allow organisms to respond to external stimuli and extract meaningful 

information from their environment (Corcoran and Moss 2017; Russo et al. 2018). Many bats use 

an active sensing system known as echolocation that uses self-generated energy. In echolocation, 

bats generate sounds in the larynx, emit sounds through the mouth or nose, and analyze returning 

echoes to orient themselves and navigate through environments (Nelson and MacIver 2006). Bat 

brains are uniquely specialized for analyzing and extracting features of sonar signals that are 

important for sending and receiving acoustic feedback, as specific neurons can respond 

selectively to a specific range of pulse-echo delays (Corcoran and Moss 2017).  

           Echolocation is dynamic and flexible. Over 80% of bats are known to use laryngeal 

echolocation (Moss and Surlykke 2010, Fenton and Simmons 2014), with frequencies ranging 

between 8 and >200 kHz (Altringham 2011). There are a main two classifications of 

echolocation calls, referred to as frequency-modulated (FM) calls and constant-frequency (CF) 

calls. These call types vary in general shape, duration, and bandwidth of the echolocation pulses 

(Brtizke et al. 2011). CF-calls are long-duration calls that keep a constant frequency over the 

span of the echolocation call (Baier and Wiegrebe 2018). FM-calls span a broader range of 

frequencies, which provides higher resolution information for the bat. The nature of FM 

echolocation is species-specific and situational (Obrist 1995). FM-bats that are foraging in 

uncluttered open spaces produce longer signals of narrow bandwidth while FM-bats foraging in 
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complex, cluttered environments produce shorter, broadband calls (Moss and Surlykke 2010) 

that sweep a wider range of auditory neurons (Corcoran and Moss 2017) to provide fine-tuned 

target localization (Moss and Surlykke 2010). FM-modulated bats also systematically change the 

timing and bandwidth of echolocation pulses when approaching a flying prey target, often 

utilizing both CF- and FM-type calls. The echolocation pulses become shorter, faster, and steeper 

as the bat progresses through the search, approach, and terminal-buzz stages of prey pursuit and 

capture (Corcoran and Moss 2017, Kloepper et al. 2019).  

           Bats use different types of signals to operate in different ecological niches. Variations in 

echolocation call structure can be split into two categories: demographic and ecological. 

Demographic information known to affect the structure of echolocation calls includes age (Jones 

et al. 1992), size (Guillen et al. 2000), sex (Schuchmann et al. 2012), body size (Fenton and 

Simmons 2014), geographic location (Gillam and McCracken 2007), and individuality (Betts 

1998, Britzke et al. 2011). Ecological and behavioral conditions that impact call variation include 

the density and complexity of clutter that bats are flying through (Broders et al. 2004, Britzke et 

al. 2011), presence of conspecifics (Gillam et al. 2007, Corcoran and Moss 2017), sources of 

noise in the backdrop (Gilliam et al 2007), phase of echolocation (Britzke et al. 2011, Corcoran 

and Moss 2017), natural light levels (McGowan and Kloepper 2020), and ecological task (Gillam 

et al. 2007, Kloepper and Pudlo 2019). Acoustic diversity is expressed at a variety of 

interspecific and intraspecific levels (Russo et al. 2018).  

 

Acoustic studies 

           Historically, knowledge of bat biology has been obtained from animals captured using 

mist-nets and tracked with radiotelemetry (O’Farrell and Gannon 1999). Due to changes in 
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technology and recent declines in bat populations, the monitoring of echolocation calls for 

identification and behavior studies has grown in popularity (O’Farrell and Gannon 1999). While 

both physical capture and acoustic monitoring come with inherent bias (O’Farrell and Gannon 

1999), acoustic monitoring technology is attractive for several reasons. First, acoustic surveys 

allow for a more complete inventory of bat species in an area (O’Farrell and Gannon 1999) and 

acoustics can provide more exact estimates of diversity than physical captures (Dawson and 

Efford 2009). Having more accurate estimates of species diversity allows for more effective 

monitoring of changes in species richness over time. Second, the use of acoustic monitors 

overcomes some of the challenges of working in the nocturnal environment or during conditions 

when the capture probability would be low (Russo et al. 2018). Third, acoustics research is less 

invasive to bats and less time-consuming for researchers. Fourth, there is a wide variety of 

portable and inexpensive bat detectors that are commercially available, making acoustic surveys 

more affordable and easily accessible. Fifth, acoustic monitoring has allowed researchers to 

investigate population declines due to white-nose syndrome without the risk of transmitting 

white-nose syndrome during alternative capture methods (Brooks 2011).  

           Despite these benefits, there are significant limitations to acoustic monitoring. First, the 

high levels of interspecific overlap and intraspecific variation in echolocation calls increase the 

risk of false-positive and false-negative identification of bats. Acoustic ID can be particularly 

challenging for low-duty call species due to higher levels of intraspecific variability, leading to 

potential overrepresentation in acoustic surveys (Russo et al. 2018). Additional manual vetting of 

bat calls or the use of multiple automatic-ID software decreases the risk of Type I and II errors in 

a dataset, but this can increase the time and cost for the researcher. Second, acoustic monitoring 

provides limited demographic data since it is impossible to distinguish between individuals in an 
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acoustic survey. Individuals are known to exhibit variation in their calls based on demographics 

(Lintott et al. 2014), but research is too limited to be able to decipher demographics from 

acoustic data. It is also impossible to identify whether calls are coming from multiple bats or the 

same bat multiple times, which complicates surveys as activity might not equal abundance 

(Hayes 2000). Third, technological advancements open many doors for research but also 

introduce new sources of potential error. Acoustic studies are at risk for unnoticed detector 

malfunctions, low-quality recordings that increase chances of Type I or II error, and user error if 

not used by highly trained personnel (Chesmore 2004). There is also an absence of well-

developed call libraries for researchers to use on analysis (Riede 1998).  

           To address the limitations of acoustic species identification, researchers often place bats in 

groups based on call characteristics. Bats are frequently divided into low-frequency, mid-

frequency, and high-frequency groups. While this doesn’t provide data on specific species, 

groups of bats that share echolocation call characteristics are often adapted for specific types of 

habitats and prey capture (Fraser et al. 2020). Bats with similar acoustic signatures may also be 

placed into groups based on their taxonomy. For example, due to acoustic similarity in the 

echolocation of endangered Myotis species, many researchers focus on the acoustic identification 

of some Myotis species as a group or a complex (Broders et al. 2004, Britzke et al. 2011). In 

many cases, geography is the only way to confirm bat species ID. For example, the echolocation 

calls of the Seminole bat (Lasiurus seminolus) and the eastern red bat (Lasiurus borealis) are too 

similar to differentiate using acoustic detectors alone (Perry 2018). Radio telemetry and capture 

techniques are required to establish presence of Seminoles and eastern red bats in ranges where 

species overlap.  
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BAT HABITAT SELECTION 

           Bats are highly adaptable, and their habitat needs vary by species. In general, bat 

occupancy in a habitat is due to a combination of forest structure, prey abundance, and the 

availability of roosts and water sources (Hayes and Loeb 2007), but variation in morphologies 

and echolocation behavior between bat species plays a large role in their habitat use and 

selection (Magalhaes de Oliveira et al. 2020). For example, wing shape is highly variable 

amongst species and impacts the speed and mode of flight used by bats, which impacts their 

habitat use (Norberg 1994, Magalhaes de Oliveira et al. 2020). Bats with broader wings are 

better adapted for slower flight with increased maneuverability, making them better suited to 

forage in cluttered environments (Feldhammer et al. 2009). Bats with narrower, pointed wings 

tend to be able to achieve faster flight with less maneuverability, making them better suited to 

foraging in more open, uncluttered environments (Norberg 1994). Dissimilarities in wing 

morphology also relate to dissimilarities in diet variation, as bats with more pointed wings seem 

to be more specialized and bats with more rounded wings exhibited a more generalist diet 

(Malgalhaes de Oliveira et al. 2020). Additionally, the echolocation properties of a bat species 

will strongly influence habitat selection (Britzke et al. 2011). Different bat species utilize 

different call characteristics, such as frequency ranges, slope, duration, pulse intervals, and 

bandwidth (Brtizke et al. 2011). Larger-bodied bats are more likely to use lower frequency calls 

that are produced less often while smaller-bodied bats use higher frequency calls at higher rates 

(Fenton 2001). Bats use the frequency of echolocation that is most appropriate for the size of the 

prey they are catching. For example, lower call frequencies are more commonly used by bats 

hunting larger insects, as echoes from insect-sized targets are weak when the wavelength is 

longer than the length of an insect’s wing (Houston et al. 2004).  
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           Habitat selection also varies by seasonality. Bats may move to different locations 

throughout the year due to seasonal changes in food availability, temperature, and other 

environmental factors. This varies based on whether the bat is a hibernating bat or a migratory 

bat. In the Midwest, migratory bats utilize forests as habitats throughout the entirety of the year 

or migrate to warmer regions (Willis and Brigham 2005). To withstand winter temperatures, 

migratory bats use extended bouts of torpor and possess a furred uropatagium that they use to 

retain heat (Shump and Shump 1982). The seasonal movements of the three foliage-roosting, 

migratory species in Central Indiana are poorly understood as these bats tend to be solitary and 

elusive (Cornman et al. 2021). In summer, these migratory bats utilize a variety of habitats, 

including tree cavities, dense foliage, tall grass, leaf litter, and even human structure (Clare at al. 

2009). The use of overwintering sites is understudied but seems to vary by individuals (Vonhof 

and Russell 2015).  

           Habitat selection by hibernating bats is a complex process influenced by factors such as 

temperature, humidity, and roost availability. During the winter, hibernating bats make regional 

migrations to hibernacula that have specific temperature and humidity conditions to survive. Due 

to their stable, above-freezing temperatures and high humidity levels, places like caves, mines, 

and underground tunnels are attractive places for bats to hibernate (Perry 2013). 

Unfortunately, Psuedogymnoascus destructans thrives in cold and moist settings, putting 

hibernating bats at high risk for white-nose syndrome (Perry 2013). Both solitary and colonial 

species of bats are found in hibernacula. For example, Eptesicus fuscus roosts singularly in caves 

while Myotis sodalis may roost in tight groups of thousands (Raesly and Gates 1987).  

           Most hibernating bats in the Midwest use forested habitats throughout the summer months 

(Silvis et al. 2016). Summer habitats for bats can be categorized into two types: foraging and 
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roosting habitat. Bats will use a variety of roosting and foraging habitats based on their species, 

gender, and local conditions. Common habitats for summer roosts are tree cavities, underneath 

dead bark, hanging in foliage, rock crevices, culverts, bat houses, and urban structures that 

mimic natural habitats (Kunz 1982). Habitat selection is heavily influenced by reproductive 

behaviors during the summer months (Menzel et al. 2002, Carter and Feldhammer 2005). Bats 

exhibit sex-specific behaviors with many bats exhibiting sexual segregation throughout the 

summer (Istvanko et al. 2016). Commonly, females will form maternity roosts while males are 

more likely to remain solitary (Kunz et al. 2003). Sexual segregation in roosting may also impact 

whether males and females are spatially segregated in foraging habitats (Istvanko et al. 2016). 

Currently, research on spatial segregation of males and females is understudied in many forest-

dwelling species. Given the difference in energetic requirements between males and females, 

foraging habitat selection may be highly impacted by sex (Istvanko et al. 2016). 

           The conservation of bat habitat is critical given the current challenges faced by bats. The 

protection of forest habitat is especially important as wooded areas are critical to sustaining bat 

diversity and abundance by providing roosts and foraging grounds. This is not only important for 

forest-dependent species. Species that are known to be open-space foragers often rely on the 

forest edges for increased insect abundance and reduced predation risks (Morris et al. 2010). 

Even urban species diversity is likely determined to an extent by the surrounding landscape, 

especially the presence of wooded areas for roosting, foraging, and protection. Bat habitat 

selection is likely complex along the natural-urban-rural interface, but the protection of forested 

habitat supports greater bat diversity and abundance in general (Krauel and Lebuhn 2016). 
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OCCUPANCY AND ABUNDANCE MODELING 

Successful management of wildlife populations requires obtaining accurate estimates of 

species occupancy and abundance. Estimating occupancy and abundance can be a costly and 

difficult endeavor as ecological data is inherently complex and wildlife species are rarely 

detected with perfect accuracy (Royle and Link 2006, Scott et al. 2002). During wildlife surveys, 

non-detection does not equate to species absence unless the probability of detecting the species is 

100%. Observed counts are sometimes used as a proxy for true population size, but this would 

require a perfect detection probability or for the detection probability to be constant across 

samples. When an individual isn’t observed, it can mean one of two things: that the species was 

present at a site but went undetected or that a species was truly absent. Additionally, an observed 

count of a species likely misses some species that have gone undetected and does not reflect the 

true abundance. A further complication is the variability of detection. Detectability may vary due 

to site detections or survey conditions on a particular day (Lele et al 2012). Due to these 

variations, detection/non-detection data cannot be analyzed as if it is true presence/absence data 

and observed count data cannot be analyzed as if it is true abundance data. To address this, 

models have been developed to solve problems caused by imperfect detectability.  

Occupancy modeling is a modeling approach that predicts the presence of species at a 

location (MacKenzie et al. 2002, Pauli et al. 2017), making it a useful tool in conservation. 

Occupancy modeling can also be used to incorporate variables of occupancy and detection such 

as habitat and site characteristics. Occupancy modeling involves the repeated sampling of a set 

of locations over a period to estimate the probability of species occupancy while accounting for 

imperfect detection (Pauli et al. 2017). This is useful in two primary ways. First, occupancy 

modeling is useful for examining the relationship between species distributions and the factors 
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that influence whether a species exists in that location (Gould et al. 2019). Secondly, occupancy 

modeling is useful in understanding metapopulation dynamics and how occupancy is related to 

site characteristics (Hanski 1992). Occupancy models are appropriate for measuring both short- 

and long-term fluctuations in populations, which is important for monitoring species status 

(Green 1997).  

The assumptions of occupancy models are as follows. One, the state of occupancy must 

be closed, meaning occupancy cannot change at a site during the sampling season. Two, sites 

must be independent, meaning that the detection of a species at one sampling site is independent 

of detecting a species at another sampling site. This limits how closely spaced the sites are to 

prevent the same individuals from being detected at multiple sites. Three, there can be no 

unexplained heterogeneity in detectability or occupancy. The probability of occupancy must be 

the same across sites or explained by site covariates, while differences in detectability must be 

explained by the characteristics of the site or the survey (Gu and Swihart 2004). If assumptions 

are violated, estimates of occupancy and detection can experience bias, and inferences from the 

study may be incorrect (Gu and Swihart 2004). Fortunately, more advanced occupancy models 

allow for assumption violations, such as occupancy models that relax the closure assumption, 

allowing for the analysis of an open population (Kendall et al. 2013). For example, Kendall et al. 

(2013) used an open model during a single-season occupancy modeling analysis to account for 

the asynchronous arrival and departure of their target amphibian species at a site during breeding 

season.  

Accounting for imperfect detection is essential in bat acoustics research due to the high 

levels of intra- and interspecific variation in bat calls (Clement et al. 2014, Ferguson et al. 2015, 

Pauli et al. 2017). This variation leads to a higher risk of type I (false-positive) or type II (false-
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negative) errors in identification (Clement et al. 2014). False-negative detection errors occur 

when a species present at a sampling site is not detected. False-positive detection errors occur 

when a species is misidentified and therefore considered present when it is not (Clement et al. 

2014, Ferguson et al. 2015). To help avoid bias and misestimations from both types of error, bat 

studies often use occupancy models that account for false-positive and false-negative detection 

errors (Royle and Link 2006). This is especially important when managing endangered species. 

Models involving bat acoustic data often utilize two different identification software programs 

along with manual vetting of echolocation calls by a professional (Clement 2016) or combining 

the data with mist-netting records (Clement et al. 2014). Additionally, multi-species occupancy 

modeling is conducive to acoustic surveys as acoustic data are usually collected for many species 

at once (Pauli et al. 2017).  

The role of species in an ecosystem depends not only on their presence but also on their 

local abundance (Waldock et al. 2022). Estimates of species abundance may be obtained by 

using abundance modeling such as N-mixture models. N-mixture models estimate the number of 

individuals of a species at each sampling site based on replicate counts despite imperfect 

detection. These models account for detection and abundance simultaneously but are sensitive to 

violations in assumptions. The assumptions of Royle’s N-mixture models are as follows. One, 

animal populations at each location are closed and remain constant. The movement of individual 

animals is allowed as long as superpopulations remain constant. Two, all individuals in a 

population have the same probability of detection during each sampling season. Three, individual 

detection probabilities are independent of one another (Royle and Link 2006).  

Generalized Royle models do not assume population closure and account for additions 

and deletions to site populations. This allows for the Royle model to be applied to open 
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populations while providing an estimate of population dynamic parameters and estimates of the 

total abundance (Dail and Madsen 2011). Eliminating the closed population assumption, 

however, makes the time interval between sampling periods important. In these cases, models for 

the observed counts should account for any increased potential for movement due to longer time 

spans existing between the sampling occasions. Incorporating population dynamics like 

recruitment and population growth allows for a more flexible analysis of population dynamics 

and abundance, making it a valuable tool for managing complex ecological systems (Dail and 

Madsen 2011). Dail and Madsen used the generalized model to verify the closure assumption in 

a Mallard point count analysis and to estimate the population abundance of American robins with 

point count data in a multi-site, multi-year study. This generalized model may have limitations as 

there have been biased estimates of survival and recruitment in cases of density dependence 

(Bellier et al. 2016).  
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Chapter 2. Evaluating bat response to human-altered landscape in a midwestern river 

corridor: an abundance modeling analysis using bioacoustics 

 

ABSTRACT 

Bats face numerous conservation challenges across the United States including wind 

energy development, the spread of white-nose syndrome, and habitat loss. Human alterations to 

natural environments can impact the presence of bats. How habitat alterations affect different bat 

species is not clearly known. Our goal is to examine bat use across a gradient of habitats altered 

by humans. During the 21-22 summer seasons, we used acoustic detectors to survey a variety of 

sites to examine bat response to the human-altered habitats along the White River corridor in 

Delaware County, IN. To ensure sampling occurred across a range of habitat types, we created 

an a priori model categorizing 1-km long sections of habitat into five habitat groups based on 

habitat structure and human influence. Within each category, we randomly selected six sample 

sites for a total of 30 sites along the river corridor. Wildlife Acoustics SM4+ echolocation 

detectors were used to collect acoustic data for three nights for two different times each summer. 

Habitat and environmental covariates were measured using artificial light measurements, field 

observation data, and ArcGIS Pro. Calls were analyzed using Kaleidoscope and BCID software 

along with manual identification based on species rarity and call structure attributes. We 

conducted a Dail-Madsen N-mixture modeling analysis to estimate call abundance and detection 

probabilities to evaluate the effects of habitat structure on bat use. The dominant species in the 

study area were overwhelmingly Eptesicus fuscus, followed by the Myotis sp. group, Lasiurus 

borealis, Nycticeius humeralis, Lasionycteris noctivagans, and Perimyotis subflavus. Due to low 

sample size, Lasiurus cinereus were ineligible for this analysis. Species abundance exhibited a 

wide variety of responses to urban variables. Prominently, Myotis species exhibit an extreme 
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negative relationship with even low levels of artificial light. Most of our species models, whether 

a forest-obligate or a generalist species, predicted that higher levels of riverbank canopy 

percentage yield an increased abundance of bats, suggesting that forests and forest-edges are an 

essential resource for urban bat communities. Probability of detection was minimally affected by 

temperature and annual Julian date, except for silver-haired bats whose odds of detection 

decreased with annual Julian date. Our aim is to gain a better understanding of species-specific 

habitat requirements for struggling bat populations and aid future management decisions 

regarding the effects of land development on bats.  

 

INTRODUCTION 

Wildlife biodiversity continues to face growing pressures from human influence and 

development (Gehrt and Chelsvig 2003, Newbold et al. 2015). Land development, a primary 

driver in the biodiversity crisis, dramatically alters compositions of flora and fauna communities 

(Gehrt and Chelsvig 2003, Haddad et al. 2015), affects ecosystem processes (Gehrt and Chelsvig 

2004), introduces pollutants and toxins to natural environments (Newbold et al. 2015), and 

results in habitat fragmentation, alteration, and eradication (Gehrt and Chelsvig 2003, Newbold 

et al. 2015, Senzaki et al. 2017). Land development and urbanization is linked to unprecedented 

rates of species declines (Mendes and Srbek-Araujo 2020), even in species known to be 

widespread and tolerant (Lintott et al. 2016).  

Currently, approximately a quarter of the global population lives in cities exceeding one 

million inhabitants (Korine et al. 2022), but the impacts of urbanization are not limited to highly 

populated cities. All urban areas, even small towns, differ from natural landscapes (Gago et al. 

2013). Impacts of urbanization on wildlife are generally considered to be negative, but the effect 



 46 

of urbanization on an organism depends on its taxon-specific traits (McKinney 2006). Some 

wildlife are highly sensitive to anthropogenic disturbances and avoid urban areas while other 

species tolerate or even thrive in anthropogenic settings (Threlfall et al. 2011). The survival of 

wildlife in urban landscapes may be tied to species opportunism and plasticity in their behavioral 

and ecological roles (Luniak 2004). For example, specialist organisms are less likely to be 

successful in urban environments than generalist species (McKinney 2008). Varying levels of 

adaptability among wildlife often result in community compositions that are dramatically 

different from those found in natural ecosystems (Shochat et al. 2006).  

Though rarely seen due to their cryptic nature, bats are frequently found in urban 

environments (Lintott et al. 2014). Overall, bat species richness and activity levels decrease in 

urban landscapes (Lintott et al. 2016), but some species of bats have been known to adapt to 

developed landscapes and successfully exploit anthropogenic resources (Bergeson et al. 2020). 

For example, buildings create impervious clutter which may restrict bat movement across a 

landscape (Lehrer et al. 2021), but the presence of buildings may be beneficial for species like 

Eptesicus fuscus that frequently use man-made structures for roosting (Kurta and Baker 1990). 

Additionally, urbanized settings are highly correlated with the presence of artificial light at night 

(ALAN) (Korine et al. 2022). In general, bats exhibit light-avoidant behaviors (Stone 2009, 

Schoeman 2016), such as roost abandonment (Stone et al. 2015) and spatial avoidance of highly-

lit areas (Stone et al. 2015, Rowse et al. 2016a, Cravens et al. 2017), but lights can provide a 

foraging advantage for some faster-flying bat species like Lasiurus borealis due to the 

congregations of insects found around artificial light sources (Acharya and Fenton 1999, 

Schoeman 2016, Azam 2018). These types of morphological and behavioral characteristics can 

influence the ability of bats species to adapt to urban settings, and morphological traits of bats 
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are becoming used as a predictor of urban tolerance for certain species (Lintott et al. 2016). Due 

to the wide-variety of morphologies and strategies used by bats, there is likely a taxon-specific 

spectrum of adaptability to urban landscapes (Rodriguez-Aguilar et al. 2017).  

Many species of bats in North America rely on forest habitats for foraging and roosting. 

Forests are key for supporting biodiversity and anthropogenic development negatively influences 

distributions of bats by reducing or fragmenting foraging and roosting habitats (Buchholz et al. 

2021), causing many forest-dependent species to suffer significant population declines. In 

addition to threats from land development, bats are facing unprecedented population declines due 

to the fungal disease white-nose syndrome (WNS) and mortality from wind energy generation 

(Frick et al. 2010, Erickson et al. 2016, Browning et al. 2021). As urban areas continue to 

expand, the loss of forested areas may decrease species diversity and available habitat for 

struggling bat populations. Identifying factors that promote or decrease bat activity in urban 

areas is an essential part of developing management strategies that support Midwestern bat 

species and facilitate species diversity.  

To investigate the impact of urbanization on bat abundance and habitat selection, we 

conducted a bioacoustics survey across a variety of human-altered riverine environments in a 

Midwestern river corridor. Limiting site selection to a river corridor ensures some environmental 

constants and provides insight into how urbanization affects bat presence along a water source, 

as distance to water is one of the main predictors of bat presence in urban landscapes (Pauli et al. 

2015, Cable et al. 2021, Lehrer et al. 2021). We hypothesize that 1) bat abundance and species 

richness will be higher in areas of higher forest cover and lower in urbanized, human-altered 

areas, and 2) that there will be a negative effect of urbanization on species abundance, but 

responses will be species-specific depending on urban tolerance level.  
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METHODS 

Location 

            Data were collected during two summers along the White River corridor in Delaware 

Country, IN. Delaware County is located in east-central Indiana, approximately 48km west from 

the border of Ohio and 80km northeast of Indianapolis (Figure 1). The county is approximately 

1,025.4 km2 with about 112,000 residents (average population density of 116 people/ km2). The 

primary incorporated city of Delaware County is Muncie (approximately 65,000 residents, 

average population density of 995 people/ km2).  The White River runs westward through the 

central part of the county through downtown Muncie (Delaware.in.us, 2023). 

Study Site Selection 

We used a stratified random sampling approach for acoustic monitor placement. Using 

ArcGIS Pro, we placed a point along every km of the White River for the span of Delaware 

County. We categorized these sites into urbanization groups based on forest percentage in a 1-

km buffer, riverbank characteristics, and land dwellings data. Sites were categorized into five 

groups, each representing a gradient of urbanization ranging from natural forested habitat to 

downtown urban. Six sites from each of the five groups were randomly selected for a total of 

thirty sampling sites (Figure 1). At each site, the surrounding environment was assessed for 

suitability of acoustic recording. Suitable acoustic locations provide ample distance from clutter 

and avoid reflective surfaces like asphalt, structural surfaces, and open water (Frick 2013). Our 

microphones were positioned at least 5m from vegetative clutter, 10m from structural surfaces, 

and 5m from the riverbank. If a site was deemed unsuitable for collection, a direction of up or 

down river was randomly selected, and the acoustic monitor was placed at the closest suitable 
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acoustic environment. All selected monitoring sites were within 0.25 km of the original ArcGIS-

selected monitoring location.  

Acoustic Collection 

            From May 25-August 12 in 2021 and 2022, we acoustically sampled for a total of 360 

detector nights. Each night, bats emerged from summer roosts to forage around 2100 and 

returned in the early hours of the morning between 0200-0600. At each location, an ultrasonic 

recorder (Wildlife Acoustics SM4Bat with calibrated SMM-U1 microphone, Maynard, MA, 

U.S.A.) was deployed for acoustic collection (sampling rate: 192 kHz, gain: 36 dB, dig HPF: 

fs/12, dig LPF: Off, trigger level: 18 SNR, trigger win: 2.0 s, div ratio: 16). Echolocation calls 

were collected in full spectrum. Each microphone was fixed to the top of a 10ft tall PVC pipe to 

prevent acoustic haze due to ground reflections from the bat calls. At each site, the microphones 

recorded at 256 kHz overnight from 2030-0900. We recorded calls over a span of three 

consecutive nights at each site twice per summer for a total of twelve sampling nights at each 

location. We allowed for six nights of recording per site each year to account for night-to-night 

variation in echolocation activity (Hayes 1997). We sampled sites in opposite order during the 

second year to account for seasonal variation in bat activity.   

Habitat Data 

To evaluate species abundance based on habitat data, we measured habitat characteristics 

in the monitoring sites using a combination of GIS analysis, on-site data, and collaborative data. 

We summarized the forest cover in a 1-km buffer around each monitoring site using the 

Delaware County tree canopy map layer by McCreary and Berland (2020) and recorded the 

proportional tree cover as a percentage. We assessed riverbank canopy cover by evaluating river 
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lines to be canopy or non-canopy and recorded the proportional riverbank canopy cover as a 

percentage in the 1-km around the monitoring site. Both forest cover percentage and riverbank 

canopy percentage serve as a measurement of habitat availability and protected edge habitat for 

navigating the river corridor. We measured the distance from the nearest bridge to each 

monitoring point and recorded the distance in meters. Bridges introduce potential sound 

pollution from vehicles into the river corridor, and distance from nearest bridge serves as a 

measurement of avoidance for potential anthropogenic sound sources that wildlife may prefer to 

avoid (Bunkley et al. 2015).  

Artificial light measurements were collected on site during August 2022 after 2100 when 

artificial lights were lit. We developed an a priori lighting index using the quantity, intensity, and 

distance of visible light sources from the monitoring site. Artificial light introduces sensory 

pollutants for nocturnal organisms and is known to alter the behavior of various nocturnal 

organisms (Cravens et al. 2017, Barre et al. 2021, Korine et al. 2022). To measure this, we 

counted the visible lights sources at the monitoring site and 30m up and down river along the 

riverbank for three measurement points per site. We mapped each visible light source and used 

Google Earth to measure the distance of each light source from the monitoring site and assigned 

an intensity rating ranging from 1-3 for each source of light based on visible effect in the 

surrounding environment. The distance of each light source was divided by its respective 

intensity rating and the resulting values were added together to calculate an artificial light value 

for the three measurement points at the site. The three measurement points were then added 

together to give a single artificial light score for the site. The scores ranged from 0.0 to 0.4.  

Lastly, MIBI (Benthic Macroinvertebrate Index of Biotic Integrity) data was obtained 

from the Muncie Bureau of Sanitation (Holloway and Gradel, 2022). Land alteration can impact 
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the abundance and availability of insects for bats and other predators foraging in riparian zones 

(Bank et al. 2006, Kalcounis-Rueppel et al. 2007), and MIBI scores provide an assessment of 

overall abundance and diversity of macroinvertebrate insects in an area. As indicator species, 

macroinvertebrate data also provides insight into the overall quality of aquatic habitats (Carter et 

al. 2017). MIBI scores were collected along the White River from the years of 2020-2021, and 

we used MIBI score from the closest macroinvertebrate sampling site to our monitoring sites. 

The majority of the MIBI sites were within 0.5 km from the closest monitoring site, but MIBI 

sites at the ends of the county were up to 2.5 km away from the closest monitoring site. 

Acoustic Analysis 

We classified bat echolocation calls to species using Wildlife Acoustics Kaleidoscope Pro 

5.4.8 bat call analysis software (Wildlife Acoustics, Inc; Concord, Massachusetts, U.S.A) and 

Bat Call ID version 2.8b (BCID) (Allen, 2012) to identify calls to species and construct detection 

histories. We programmed Kaleidoscope Pro and BCID to limit identifications by requiring call 

sequences to contain a minimum of five pulses with 70% minimum pulse agreement for species 

level identification. Calls were classified to nine common species based on known species 

ranges. In Kaleidoscope Pro 5.4.8, we restricted species selection using The Bats of North 

America 4.3.0 filter on the default setting. In BCID, species selection was restricted to nine 

common Indiana species based off historic capture data: Eptesicus fuscus, Lasiurus borealis, 

Lasiurus cinereus, Lasionycterius noctivagans, Nycticieus humeralis, Perimyotis subflavus, 

Myotis lucifugus, Myotis sodalis, and Myotis septentrionalis. Due to the overlap in the 

echolocation calls in the genus Myotis (Britzke et al. 2011), all Myotis calls were pooled into a 

single Myotis sp. group to avoid identification error. We manually vetted a subset of calls from 

each recording night to check for species misidentification and ensure that false identifications of 
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non-bat calls were not prominent in the dataset. Calls classified to species level were only 

included in the final dataset if there was species-level agreement between both automatic 

identification software.   

Statistical Analysis 

We intended to conduct an occupancy modeling analysis using a method developed by 

Royle and Link (2006) to estimate bat presence and detection probabilities. This method, 

developed by Royle and Link (2006), accounts for instances of false-negative and false-positive 

detections that may occur due to the inherent bias of acoustic measurement (Clement et al. 

2014). Due to high bat species presence in the data, however, our dataset was ineligible for an 

occupancy modeling analysis. As our sampling took place along the river corridor, we predict 

that the presence of water biased bat presence in our dataset as water is a known predictor for bat 

occupancy (Lehrer et al. 2021). Four species (Eptesicus fuscus, Lasiurus borealis, Lasionycterius 

noctivagans, and Nycticeus humeralis) were present at all thirty sampling sites on at least one 

night. 

Instead, we conducted a Dail-Madsen N-mixture modeling analysis to estimate bat call 

abundance and detection probabilities (Dail and Madsen 2011, Caldwell et al. 2019). The Dail-

Madsen model is an extension to the Royle (2004) N-mixture model but relaxes the closure 

assumption of the model to allow estimates of abundance for an open population. The 

generalized Dail-Madsen N-mixture model used is: 

Nit ~ Poisson (λ, )  

GitNit-1 ~ Poisson (γ * Nit-1) 

SitNit-1 ~ Binomial(Nit-1, ω)  

Nit-1 = Git + Sit 

γit ~ Binomial (Nit, P) 
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with the unobserved abundance at site i at time t (Nit), expected abundance (λ), dispersion 

parameter (), number of individuals gained by immigration during one night at site i since time 

t (Git), number of individuals that survived since time t-1 at site i at time t (Sit), arrival rate of 

individuals (γ), apparent survival probability of individuals (ω), detection probability (P), and 

observed number of bat calls at site i at time t (γit). 

Our habitat covariates for each monitoring site were forest canopy coverage in a 1-km 

buffer, riverbank canopy coverage in a 1-km buffer, artificial light level values, the distance to 

the nearest bridge, and the MIBI score. Our environmental detection data were annual Julian 

date, average nightly temperature, and year. We conducted Spearman’s correlation tests on 

habitat covariates to avoid redundancy in the variables. Variables were retained if their 

correlation was less than 0.60, which removed forest canopy coverage as a variable due to high 

correlation with artificial light. All possible combinations of covariates of abundance were 

evaluated for each species using Akaike’s Information Criterion (AIC) value (Burnham and 

Anderson 2001). All models within two AIC-units of each other were considered equally 

plausible. The final set of top models were averaged for a single global model (Mazerolle 2023) 

(Table 1). The models were fit using the unmarked package in R version 4.3.2 (Fiske and 

Chandler 2011), using acoustic data to predict call abundance as substitute for bat activity. In the 

model, we compared 95% confidence intervals of call abundance between the habitat covariates 

for all nine species. We used the models to create predictions of abundance for each habitat 

covariate with the others held constant at their mean.  

 

 



 54 

RESULTS 

Acoustic Monitoring 

We sampled 30 sites over 360 survey nights across the two summers, which yielded a 

total of 206,798 detector recordings. Of these, 157,986 were identifiable bats calls per 

Kaleidoscope Pro, with many of the rest being insect noise or unknowns. Of the identifiable bat 

calls, Kaleidoscope Pro and BCID agreed on species level assignments for 87,964 calls. We 

manually vetted subsets of this dataset to confirm the presence of all expected species for 

Delaware County. The dominant species in the study area were overwhelmingly big brown bats, 

followed by the Myotis sp. group, eastern red bats, evening bats, silver-haired bats, and tricolored 

bats. Due to low sample size, hoary bats were ineligible for this analysis.  

Environmental variables 

 We used riverbank canopy cover (%, 1-km buffer), artificial light index value, distance to 

nearest bridge, and MIBI scores as the environmental predictors in our final abundance models. 

We removed total forest cover (%, 1-km buffer) as a predictor due to high correlation to artificial 

light levels (rho = 0.68).  

Species models 

Big brown bat: Big brown bats were our most detected species and accounted for 77.3% 

classified to species in 2021 and 2022. We detected big brown bats at 100% of sites on every 

survey night. Riverbank canopy coverage and distance to nearest bridge were positively related 

to big brown bat abundance, with big brown bat abundance increasing by 350 bats between 0.0 

and 0.8 riverbank canopy coverage (Table 2, Figure 2) and 140 bats between 0 and 3000 m 

distance from the nearest bridge (Figure 3). Artificial light levels and MIBI scores were 
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negatively related to big brown bat abundance, with big brown bat abundance decreasing by 415 

bats between the lowest and highest artificial light levels (Figure 4) and 450 bats between MIBI 

scores of 32 to 48 (Figure 5). Probability of detection for big brown bats was related to annual 

Julian date and temperature, with probability of detection decreasing by 2.5% between day 140 

and 220 (Figure 6) and increasing by 10% between 45- and 80-degrees Fahrenheit (Figure 7).  

Myotis sp. group (little brown bat, Indiana bat, northern long-eared bat): Myotis species 

accounted for 8.9% of calls classified to species in 2021 and 2022. We detected Myotis species 

at 70% of the sites and on 50.5% of the survey nights. Myotis species exhibit a significant 

negative relationship with artificial light (Table 2, Figure 8), with Myotis sp. abundance 

decreasing from 125 bats to 0 at even minor artificial light levels. Riverbank canopy coverage, 

distance to nearest bridge, and MIBI scores were positively related to Myotis sp. abundance. 

Myotis sp. abundance increased by eight bats between 0.0 and 0.8 riverbank canopy coverage 

(Figure 9), six bats between 0 and 3000 m distance from the nearest bridge (Figure 10), and by 

25 bats between MIBI scores of 32 to 48 (Figure 11). Probability of detection for the Myotis 

species was related to annual Julian date, with probability of detection increasing by 15% 

between day 140 and 220 (Figure 12). Probability of detection for the Myotis species was related 

to average nightly temperature, with probability of detection decreasing 4.5% between 45- and 

80-degrees Fahrenheit (Figure 13). Probability of detection for the Myotis species was related to 

year, with probability of detection increasing by 14% between 2021 and 2022 (Figure 14). 

Eastern red bat: Eastern red bats accounted for 4.9% of calls classified to species in 2021 

and 2022. We detected eastern red bats at 100% of the sites and on 93.9% of the survey nights. 

Riverbank canopy coverage was negatively related to eastern red bat abundance, with eastern red 

bat abundance decreasing by nine bats between 0.0 and 0.8 riverbank canopy coverage (Table 2, 
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Figure 15). Eastern red bat abundance was positively related to artificial light levels and distance 

to the nearest bridge, with eastern red abundance increasing by seven bats between the lowest 

and highest artificial light levels (Figure 16), and by 38 bats between 0 and 3000 m distance from 

the nearest bridge (Figure 17). MIBI score had no impact on eastern red bat abundance (Figure 

18). Probability of detection for the eastern red bat was not affected by annual Julian date (Figure 

19). Probability of detection for the eastern red bat was related to average nightly temperature, 

with probability of detection decreasing 48% between 75- and 80-degrees Fahrenheit (Figure 

20). 

Evening bat: Evening bats accounted for 4.6% of calls classified to species in 2021 and 

2022. We detected evening bats at 100% of the sites and on 84.1% of the survey nights. 

Riverbank canopy coverage and distance to nearest bridge were positively related to evening bat 

abundance, with evening bat abundance increasing by 70 bats between 0.0 and 0.8 riverbank 

canopy coverage (Table 2, Figure 21) and 10 bats between 0 and 3000 m distance from the 

nearest bridge (Figure 22). Artificial light levels and MIBI score had no impact on evening bat 

abundance (Figures 23, 24). Probability of detection for big brown bats was related to annual 

Julian date and temperature, with probability of detection increasing by 14% between day 140 

and 220 (Figure 25) and increasing by 22% between 45- and 80-degrees Fahrenheit (Figure 26).  

Silver-haired bat: Silver-haired bats accounted for 3.3% of calls classified to species in 

2021 and 2022. We detected silver-haired bats at 100% of the sites and on 77.5% of the survey 

nights. Silver-haired bat abundance was negatively related to riverbank canopy coverage and 

artificial light levels, with silver-haired abundance decreasing by 32 bats between 0.0 and 0.8 

riverbank canopy coverage (Table 2, Figure 27) and 15 bats between the lowest and highest 

artificial light levels (Figure 28). Distance to nearest bridge and MIBI scores had no impact on 
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silver-haired bat abundance (Figures 29, 30). Probability of detection for the silver-haired bat 

was related to annual Julian date, with probability of detection decreasing by 90% between day 

140 and 220 (Figure 31). Probability of detection for the silver-haired bat was related to average 

nightly temperature, with probability of detection increasing 75% between 45- and 80-degrees 

Fahrenheit (Figure 32). Probability of detection for the silver-haired bat was related to year, with 

probability of detection increasing by 22% between 2021 and 2022 (Figure 33).  

Tricolored bat: Tricolored bats accounted for 1% of calls classified to species in 2021 

and 2022. We detected tricolored bats at 76.7% of the sites and on 44.2% of the survey nights. 

Tricolored bat abundance was positively related to riverbank canopy cover (Table 2, Figure 34), 

with tricolored bat abundance increasing from 0 to 27 bats between 0.4 and 0.8 riverbank 

canopy. Tricolored bat abundance was negatively related to artificial light levels and distance to 

the nearest bridge, with tricolored abundance decreasing by 8 bats between the lowest and 

highest artificial light levels (Figure 35) and by 4 bats between 0 and 3000 m distance from the 

nearest bridge (Figure 36). MIBI scores had no impact on tricolored bat abundance (Figure 37). 

Probability of detection for the tricolored bat was related to annual Julian date, with probability 

of detection increasing by 17% between day 140 and 220 (Figure 31). Probability of detection 

for the tricolored bat was related to average nightly temperature, with probability of detection 

increasing 10% between 45- and 80-degrees Fahrenheit (Figure 32). Probability of detection for 

the tricolore bat was related to year, with probability of detection increasing by 1.2% between 

2021 and 2022 (Figure 33).  
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DISCUSSION 

Our results show some support for our hypotheses. Species richness was higher in more 

forested, riparian sites with all six species groups detected at our most natural sites and only four 

species groups detected at our most well-lit, urban site. Specifically, our Myotis species group 

and tricolored bats exhibited a significant decrease in presence as sites became more urban. Our 

model predictions show some support for our second hypothesis that urbanization will have a 

negative effect on predicted species abundance, but that this effect will vary by bat species 

tolerance. In general, we see a negative effect of urbanization on bat species abundance, 

however, the level of response varied by species. Many species exhibited similar trends in 

response to the covariates, but in some cases, we saw minimal or positive effects to urbanization.  

Most of our models predicted that increased riverbank canopy percentage yields 

increased abundance of bats. Big brown bats, Myotis species bats, evening bats, and tricolored 

bats all exhibited a positive relationship between riverbank canopy percentage and bat 

abundance, despite some of these species being known as urban-tolerant species or species 

known to forage in open clearings. Big browns, in particular, are known to be urban generalists 

that successfully roost and forage in urban areas (Agosta 2002). This suggests that even for 

urban-tolerant species or species that are adapted to foraging in open areas, trees offer important 

fitness benefits and are critical to the health and survival of many bat species (Bergeson 2021, 

Kunz et al. 2003). Our results add to a developing body of research supporting that forested 

habitat and forest-edges are an essential resource for urban bat communities (Gehrt and Chelsvig 

2008).  

Big brown bats were our most successful species, with big browns present at every site 

on every recording night. While our models predict an increased abundance of big brown bats at 
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decreased light levels and increased riverbank canopy percentage, this species’ overwhelming 

abundance at all sites further supports that big brown bats are urban-tolerant generalists. Known 

to have flexibility in habitat use and roost selection (Agosta 2002, Neubaum et al. 2007), our 

study further confirms big brown bat’s generalist ability to take advantage of both urban and 

natural habitat. Our models, however, predict that big brown bats do exhibit some level of 

preference for more forested areas. For example, our models predicted the presence of 600 big 

browns at sites with 80% riverbank canopy percentage on any given night while only predicting 

250 big brown bats at a site with 0% riverbank canopy percentage. While this demonstrates a 

substantial decrease in big brown bat abundance at decreased riverbank canopy percentage, 

having 250 bats at a site with no canopy coverage is substantial on its own. This suggests that 

while big brown bats may be successful in highly altered and urbanized habitats, these urban big 

brown bats will better thrive in conditions of decreased artificial light levels and increased forest 

cover availability. Similar studies (Cravens and Boyles 2019, Seewagon and Adams 2021) found 

that big brown bats actively avoid LED lights but have been known to exploit insects around 

mercury or sodium vapor lights, suggesting the spectral composition of light sources may impact 

big brown response to light-polluted habitats.  

Interestingly, big brown bats exhibited a mild decrease in predicted abundance along 

areas of the river with higher MIBI scores. This could be due to a couple of phenomena. First, 

our MIBI scores, a proxy for insect abundance and diversity, were highest in the most heavily 

forested, riparian sections of the river. As big brown bats are urban generalists, they may be 

taking advantage of prey availability in more urbanized sections of the river where other bats are 

less abundant. Therefore, their ideal foraging situation may be dimly-lit urban edge-habitats 

where there is decreased competition with other bats. Second, big brown bats can cross large 
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stretches of urban habitat to reach ideal foraging habitat and food resources (Duchamp et al. 

2004, Schimpp et al. 2018), and big brown bats may travel up to 11 km to forage (Starbuck et al. 

2014). Big brown bats, a beetle specialist (Whittaker 1972, Burke 2002, Agosta and Morton 

2003, Whitaker 2004, Feldhammer et al. 2009), may be covering vast expanses of the White 

River, meaning they may not need to prioritize areas with potentially greater prey diversity if a 

constant source of their specialized prey is available.   

Myotis species were the second most abundant group after big brown bats. Out of all our 

species, our model with strongest impact is the relationship between Myotis species abundance 

and artificial light. Myotis abundance exhibited a strong negative relationship with artificial light 

with our predicted Myotis abundance dropping quickly to zero in the presence of even small 

levels of artificial light. While Myotis species were detected at two-thirds of our sites, the sites 

with Myotis presence ranged from forested-riparian to forested-residential. In these sites, the 

brightest available light sources were usually from distant porch lights or streetlights, with leaves 

and vegetation often further obstructing the view of the light source from the river corridor. This 

suggests that light tolerance for Myotis species may be limited to gentle, distant sources of 

artificial light near forested habitat. This supports previous research that found Myotis avoid 

areas of ALAN (McGuire and Fenton 2010, Cravens and Boyles 2019, Seewagon and Adams 

2021) by up to 50m from the lights (Azam 2018), even lights that are at low luminance. Due to 

their light-aversion, Myotis species are likely to experience decreased foraging habitat 

availability compared to other bats that are more tolerant to light-polluted environments 

(Seewagon and Adams 2021). Interestingly, little brown bats (Myotis lucifugus) are known to 

roost in manmade structures (Kurta 2008, Johnson et al. 2019) suggesting that the benefits to 
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roosting in buildings for some little brown bats outweigh potential exposure to artificial light 

sources when leaving manmade roosts.  

While artificial light levels had the greatest impact on Myotis species abundance in this 

study, the Myotis species group also exhibited a positive relationship with riverbank canopy 

percentage and mild positive relationships with distance to nearest bridge and higher MIBI 

scores. Previous research supports the fact that Myotis activity is highest in forests or riparian 

habitats (Henderson and Broders 2008). The aversion of Myotis species to our urban monitoring 

sites suggests they may have strict habitat requirements along with their intolerance to artificial 

light. These requirements likely include ample forest cover, adequate distance to anthropogenic 

sensory pollution, and prey abundance availability. Landscapes dominated by agriculture and 

urban development would not meet these requirements. As all three Myotis species in this study 

are State Endangered in Indiana, a thorough understanding of the species-specific requirements 

of this forest-dwelling species should be a focal point for future urban bat research. 

Eastern red bats were our third most detected species. Given their widespread abundance, 

we detected fewer eastern red bats than anticipated. There is current speculation that eastern red 

bats may be experiencing a substantial decline although they are not currently listed by the U.S. 

Fish and Wildlife. Eastern red bats are known to be moderately tolerant of urbanization (Parkins 

et al. 2016), although they do not exhibit the same roost flexibility in urban areas that big brown 

bats possess. Our results reflected eastern red bat’s tolerance for urbanized areas. Our models 

showed that eastern red bats preferred lower percentages of riverbank canopy percentage and 

exhibited a slight increase in abundance at higher artificial light levels. Like other bat species 

that are adapted for faster flight, red bats are generally considered to be a light-tolerant species 

(Rowse et al. 2016, Cravens and Boyles 2019). Faster flight also predisposes them for foraging 
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in uncluttered, open habitats (Elmore et al. 2005). Our data is consistent with other studies that 

detected red bats frequenting open, non-forested habitat (Hickey and Fenton 1990, Hickey et al. 

1996, McCracken et al. 1997) and streetlights (Mager and Nelson 2001).  

While red bats exhibit tolerance for a range of habitat conditions and urban influence, red 

bats are forest-dwelling bats that rely heavily on forest availability for roosting (Monarchio et al. 

2020). Other studies found that red bats commute across distances to open foraging grounds 

(Mager and Nelson 2001, Elmore et al. 2005), but the maximum distance they travel from their 

day roost may be less than 10 kilometers (Hutchinson and Lacki 1999). This implies that the 

proximity of forested habitat may influence whether a red bat utilizes an open area for foraging. 

A permanent water source in the vicinity is also important for red bats (McCracken et al. 1997, 

Hutchinson and Lacki 1999), suggesting that red bats may tolerate urban settings for commuting 

and foraging, but they select landscape-level habitat that provides nearby access to a water 

source and forested roosting habitat. This further reiterates that access to trees and forested 

habitat is essential, even for bats that are more adapted to urban environments.   

To our knowledge, this is the first-time evening bats have been recorded in Delaware 

County. The evening bat, endangered in the state of Indiana, is a common species in the 

southeastern United States but has been experiencing expansions in its range for the past six 

years (Andersen et al. 2017; Kaarakka et al. 2018, Rolland et al. 2022). Recent studies in 

Michigan, Wisconsin, and Minnesota show that evening bats are becoming increasingly common 

in northern regions of the Midwest (Kaarakka et al. 2018). Evening bats were our fourth-most 

detected species in our study, further supporting the idea that evening bats are expanding their 

range northward.  
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Evening bats are known to prefer roosting in trees and foraging in areas that are less 

developed (Duchamp et al. 2004), but they have been known to roost in man-made structures 

(Rolland et al. 2022) and to forage near urban areas (Schimpp et al. 2018). Our results showed 

that evening bat abundance increases with riverbank canopy percentages, but the response of 

evening bats to artificial light and MIBI scores was relatively neutral. These results complement 

previous research that suggest evening bats rely heavily on forest ecosystems and prefer to 

forage along forest edges, riparian zones, or open fields near roosting habitat (Morris et al. 

2011). Evening bats were detected at every site in our study, but almost a third of the detected 

calls came from three adjacent monitoring sites in highly forested habitat with complete canopy 

on both sides of the river near a few low-traffic bridges. Given the high abundance of localized 

bats and the fact that evening bats prefer to forage within two miles of their roost (Kurta 2008), 

this may be the site of a roosting colony. Evening bats are also known to prefer mature trees 

close to water sources as the site of their maternity colonies (Munzer et al. 2023). Additionally, 

evening bat abundance in our study increased as distance to bridges decreased, but this 

relationship may be influenced by the proximity between the three primary evening bat sites and 

two dimly lit, low-traffic bridges.  

Silver-haired bat abundance exhibited a negative relationship with riverbank canopy 

percentage and artificial light levels but was not impacted by bridge distance or MIBI scores. 

Silver-haired bats are highly dependent on forests for roosting, but they are known to feed 

predominantly in open clearings or along roads and waterways adjacent to forested areas 

(Reimer et al. 2010). Unlike other species that forage in open habitats, silver-haired bats are not 

adapted for faster flight (Cryan 2003), estimating average foraging speeds of only 4.8-5.0 m/s 

(Best and Hunt 2020). Odds of detection for silver-haired bats were also influenced by annual 
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Julian date, with silver-haired bat detection probability decreasing significantly after early/mid-

June. Silver-haired bats are migratory bats that are known to be absent in mid-summer in the 

Lake Michigan region and surrounding states (Kurta et al. 2018). Previous research found that 

most of the silver-haired bats in the Midwest region may be summering in northern Michigan 

and Wisconsin and into Ontario (Kurta 2017, Kurta et al. 2018). This suggests that silver-haired 

bat presence in Delaware County may be occurring during late spring migration, with silver-

haired bat presence decreasing significantly during the month of June. The combination of these 

factors indicates that silver-haired activity in Delaware County is highest during late May/early 

June in dimly-lit clearings near open stretches of river. 

Our results reflected the tricolored bat’s status as a riparian specialist (Veilleux et al. 

2003, Ford et al. 2005, Gaulke et al. 2023). Our models demonstrated a strong positive 

relationship between riverbank canopy percentage and tricolored abundance, with no individuals 

being predicted unless riverbank canopy percentage was at least 40%. Tricolored bats in our 

study area also exhibited a strong negative relationship with artificial light levels, although this 

relationship was not as extreme as the response of Myotis to artificial light. Tricolored bats are 

known to rely heavily on forested habitat for both roosting and foraging (Veilleux et al. 2003, 

Perry and Thill 2007) and their wing morphology combined with their acoustic behavior makes 

them morphologically adapted to forage in high clutter areas (Menzel et al. 2005, Lacki et al. 

2007). Historically, tricolored bats have been associated with edge habitats and waterways 

(Fujita and Kunz 1984, Shute et al. 2021, Gaulke et al. 2023), which complements our results 

that tricolored bat abundance exhibits a positive relationship with increased amounts of riverbank 

coverage. Unlike our Myotis species, tricolored bats were present at one urban site close to the 

downtown section of the city of Muncie. This site was comprised of both sides of the riverbank 
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having coverage, low light-levels, and mid-level MIBI score. Spans of forest coverage blocked 

anthropogenic pollutants like light and sound coming from the surrounding industrial buildings 

and residences. Forested areas in the vicinity likely acted as barriers, mitigating the effects of 

anthropogenic pollutants like light and sound from the adjacent streets, industrial zone, and 

residences. This implies that some tricolored bats may exhibit degrees of urban tolerance 

provided they have access to even minute amounts of forested habitat, forest edges, and a water 

source.  

The extent to which bats can thrive in human-altered environments relies on their taxon-

specific characteristics and the specific conditions of an urban environment. Forest-obligate 

species are the most constrained in their ability to adapt to human-altered habitat because they 

rely more heavily on continuous forest expanses, which are declining across all landscapes. 

Nevertheless, urban-generalists and those adapted to forage in open environments also have 

varying degrees of dependence on forests for roosting for foraging habitat. Thus, forest 

availability is likely required for maintain high levels of bat diversity in urbanized areas. In 

addition to evaluating forest availability in developing areas, it is essential for land managers to 

consider the unique requirements of each species, such as the extreme limited tolerance that 

endangered Myotis species exhibit towards artificial light. Our results suggest forested 

availability and artificial light levels along waterways are important management considerations 

for all bat habitats. 

Future studies should also consider means of decreasing the anthropocentric methods 

used when assessing urban variables. ALAN, for example, is often measured in terms of human 

sensitivity and perception to light but can be greatly altered by the distance to and angle from 

artificial light sources (Owens and Lewis 2018). This is especially true for nocturnal organisms 
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that occupy 3D-space that may be experiencing sources of ALAN from above, at high speeds, or 

from unique microhabitats.  

 

CONCLUSIONS 

 Species abundance for most of our detected species (big brown, Myotis species, evening, 

and tricolored) increased with higher percentages of riverbank canopy.  Even red bats and silver-

haired bats, which exhibited an increased abundance in response to some urban variables, rely 

heavily on trees as critical sources for roost habitat. This reiterates that availability of forested 

habitats is an essential resource for urban bats, whether a forest-obligate or urban-tolerant 

species. Myotis species (little brown bat, Indiana bat, northern long-eared bat) and tricolored bats 

demonstrated aversion to urban sites, with Myotis species exhibiting a strong intolerance to 

artificial light and tricolored bats exhibiting a preference for higher riverbank canopy coverage. 

Our results suggest that urban forest availability and artificial light exposure should be 

considerations in future management decisions regarding habitat protection and the effects of 

land development on bats, particularly near urban waterways. Future research should focus on 

impacts of bridge type, developing more comprehensive measurements of prey availability for 

bats, and improving the anthropocentric methods used when measuring urban variables.  
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TABLES & FIGURES 

Table 1. Dail-Madsen model results with the lowest Akaike’s Information Criterion values (△AIC <2). 

Abundance (λ), recruitment (γ), survivorship (ω), and detection probability (P) are included in model 

descriptions along with covariates: RB%: Riverbank canopy %; BR: Distance to nearest the bridge; AL: 

Artificial light level; MIBI: Benthic macroinvertebrate index of biotic integrity river score; day: annual 

Julian date; temp: average nightly temperature between 11 p.m. and 5 a.m.; year: 2021 vs. 2022; and a 

period for no covariate effects. Species names are big brown bat (Eptesicus fuscus), Myotis sp. group 

(Myotis lucifugus/sodalist/septentrionalis), eastern red bat (Lasiurus borealis), evening bat (Nycticius 

humeralis), silver-haired bat (Lasionycterius noctivagans), and tricolored bat (Perimyotis subflavus).  

 

Species  Model        △AIC  K 

Big brown λ(RB%+BR+AL+MIBI) γ(.) ω(.) p(day + temp)   0  10 

    

Myotis Sp. λ(RB%+BR+AL+MIBI) γ(.) ω(.) p(day + temp + year)  0  10  

  

Eastern Red λ(RB%+BR+AL+MIBI) γ(.) ω(.) p(day + temp)   0  10  

 

Evening λ(RB%+BR+AL) γ(.) ω(.) p(day + temp)   0  9  

  λ(RB%+BR) γ(.) ω(.) p(day + temp)    0.02  8  

  λ(RB%+BR+AL+MIBI) γ(.) ω(.) p(day + temp)   1.99  10  

λ(RB%+BR+MIBI) γ(.) ω(.) p(day + temp)   1.49  9  

          

Silver-haired λ(RB%+BR+AL) γ(.) ω(.) p(day + temp + year)   0  10 

λ(RB%+AL) γ(.) ω(.) p(day + temp + year)   0.49  9 

  λ(RB%+AL+MIBI) γ(.) ω(.) p(day + temp + year)  0.63  10 

  λ(RB%+BR+AL+MIBI) γ(.) ω(.) p(day + temp + year)  0.95  11 

 

Tricolored λ(RB%+BR) γ(.) ω(.) p(day + temp + year)   0  9 

λ(RB%+BR+MIBI) γ(.) ω(.) p(day + temp + year)  1.68  10 

  λ(RB%+BR+AL) γ(.) ω(.) p(day + temp + year)   1.86  10 

_____________________________________________________________________________________ 
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Table 2. Model-averaged coefficients and 95% confidence intervals across all abundance models. Species 

names are big brown bat (Eptesicus fuscus), Myotis sp. group (Myotis lucifugus/sodalist/ septentrionalis), 

eastern red bat (Lasiurus borealis), evening bat (Nycticius humeralis), silver-haired bat (Lasionycterius 

noctivagans), and tricolored bat (Perimyotis subflavus).  

 

Species   Parameter    Coefficient.              95% C.I.   

 

Big brown  Intercept    6.09   6.04, 6.14 

   Riverbank Canopy   0.27   0.21, 0.31 

   Artificial Light    -0.28   -0.34, -0.21 

   Bridge Distance    0.07   0.03, 0.10 

   MIBI Score    -0.27   -0.32, -0.23 

 

Myotis Sp.  Intercept    2.14   1.91, 2.36 

   Riverbank Canopy   0.28   0.16, 0.41 

   Artificial Light    -3.73   -4.16, -3.31 

   Bridge Distance    0.17   0.14, 0.20 

   MIBI Score    0.78   0.69, 0.87 

 

Eastern red  Intercept    2.49   2.29, 2.70  

   Riverbank Canopy   -0.20   -0.37, -0.02 

   Artificial Light    -0.28   -0.51, -0.04 

   Bridge Distance    0.40   0.28, 0.50 

   MIBI Score    0.01   -0.17, 0.18 

  

Evening  Intercept    3.43   3.18, 3.68 

   Riverbank Canopy   0.81   0.67, 0.95  

   Artificial Light    -0.04   -0.24, 0.15 

   Bridge Distance    0.07   0, 0.15 

   MIBI Score    -0.03   -0.13, 0.08 

  

Silver-haired  Intercept    2.65   2.52, 2.78 

   Riverbank Canopy   -0.46   -0.6, -0.32  

   Artificial Light    -0.5   -0.69, -0.31 

   Bridge Distance    0.1   -0.02, 0.22 

   MIBI Score    0.1   -0.05, 0.24 

 

Tricolored  Intercept    1.2   0.57, 1.82 

   Riverbank Canopy   1.84   1.32, 2.37 

   Artificial Light    -1.36   -2.25, -0.47 

   Bridge Distance    -0.55   -0.79, -0.31 

   MIBI Score    -0.12   -0.34, 0.10 

_____________________________________________________________________________________ 
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Figure 1. Thirty acoustic monitoring sites along the White River in Delaware County, IN from 

May-August in 2021-2022. Monitoring sites span through Daleville, Yorktown, Muncie, 

Smithfield, and Windsor.  
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Figure 2. Model predicted big brown bat (Eptesicus fuscus; EPFU) abundance based on a 

gradient of riverbank canopy cover in a 1-km buffer. All other model covariates were held 

constant at their mean. Data collected on May-August, 2021 and 2022 from the White River in 

Delaware County, IN. Solid line represents the mean predicted abundance and shaded ribbon is 

the bounds of the 95% Prediction Intervals. 
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Figure 3. Model predicted big brown bat (Eptesicus fuscus; EPFU) abundance based on the 

distance to closest bridge from the monitoring site. All other model covariates were held constant 

at their mean. Data collected on May-August, 2021 and 2022 from the White River in Delaware 

County, IN. Solid line represents the mean predicted abundance and shaded ribbon is the bounds 

of the 95% Prediction Intervals. 
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Figure 4. Model predicted big brown bat (Eptesicus fuscus; EPFU) abundance based on a 

gradient of artificial light levels at the monitoring site. All other model covariates were held 

constant at their mean. Data collected on May-August, 2021 and 2022 from the White River in 

Delaware County, IN. Solid line represents the mean predicted abundance and shaded ribbon is 

the bounds of the 95% Prediction Intervals. 
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Figure 5. Model predicted big brown bat (Eptesicus fuscus; EPFU) abundance based on MIBI 

scores. All other model covariates were held constant at their mean. Data collected on May-

August, 2021 and 2022 from the White River in Delaware County, IN. Solid line represents the 

mean predicted abundance and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 6. Relationship between the annual Julian day and the probability of detection of big 

brown bats (Eptesicus fuscus; EPFU) in Delaware County, IN in May-August, 2021 and 2022. 

All other model predictors were held constant at their mean. Solid line represents the mean 

probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 7. Relationship between the average nightly temperature and the probability of detection 

of big brown bats (Eptesicus fuscus; EPFU) in Delaware County, IN in May-August, 2021 and 

2022. All other model predictors were held constant at their mean. Solid line represents the mean 

probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 8. Model predicted Myotis sp. group (Myotis lucifugus/sodalist/septentrionalis) 

abundance based on levels of artificial light. All other model covariates were held constant at 

their mean. Data collected on May-August, 2021 and 2022 from the White River in Delaware 

County, IN. Solid line represents the mean predicted abundance and shaded ribbon is the bounds 

of the 95% Prediction Intervals. 
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Figure 9. Model predicted Myotis sp. group (Myotis lucifugus/sodalist/septentrionalis) 

abundance based on a gradient of riverbank canopy cover in a 1-km buffer. All other model 

covariates were held constant at their mean. Data collected on May-August, 2021 and 2022 from 

the White River in Delaware County, IN. Solid line represents the mean predicted abundance and 

shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 10. Model predicted Myotis sp. group (Myotis lucifugus/sodalist/septentrionalis) 

abundance based on the distance to closest bridge from the monitoring site. All other model 

covariates were held constant at their mean. Data collected on May-August, 2021 and 2022 from 

the White River in Delaware County, IN. Solid line represents the mean predicted abundance and 

shaded ribbon is the bounds of the 95% Prediction Intervals. 
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 Figure 11. Model predicted Myotis sp. group (Myotis lucifugus/sodalist/septentrionalis) 

abundance based on MIBI scores. All other model covariates were held constant at their mean. 

Data collected on May-August, 2021 and 2022 from the White River in Delaware County, IN. 

Solid line represents the mean predicted abundance and shaded ribbon is the bounds of the 95% 

Prediction Intervals. 
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Figure 12. Relationship between the annual Julian day and the probability of detection of the 

Myotis sp. group (Myotis lucifugus/sodalist/septentrionalis )in Delaware County, IN in May-

August, 2021 and 2022. All other model predictors were held constant at their mean. Solid line 

represents the mean probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 13. Relationship between the average nightly temperature and the probability of detection 

of the Myotis sp. group (Myotis lucifugus/sodalist/septentrionalis) in Delaware County, IN in 

May-August, 2021 and 2022. All other model predictors were held constant at their mean. Solid 

line represents the mean probability and shaded ribbon is the bounds of the 95% Prediction 

Intervals. 

 

 

 



 93 

 
 

Figure 14. Relationship between 2021 vs. 2022 and the probability of detection of the Myotis sp. 

group (Myotis lucifugus/sodalist/septentrionalis) in Delaware County, IN in May-August, 2021 

and 2022. All other model predictors were held constant at their mean. Solid line represents the 

mean probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 15. Model predicted eastern red bat (Lasiurus borealis, LABO) abundance based on a 

gradient of riverbank canopy cover in a 1-km buffer. All other model covariates were held 

constant at their mean. Data collected on May-August, 2021 and 2022 from the White River in 

Delaware County, IN. Solid line represents the mean predicted abundance and shaded ribbon is 

the bounds of the 95% Prediction Intervals. 
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Figure 16. Model predicted eastern red bat (Lasiurus borealis, LABO) abundance based on 

levels of artificial light. All other model covariates were held constant at their mean. Data 

collected on May-August, 2021 and 2022 from the White River in Delaware County, IN. Solid 

line represents the mean predicted abundance and shaded ribbon is the bounds of the 95% 

Prediction Intervals. 
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Figure 17. Model predicted eastern red bat (Lasiurus borealis, LABO) abundance based on the 

distance to closest bridge from the monitoring site. All other model covariates were held constant 

at their mean. Data collected on May-August, 2021 and 2022 from the White River in Delaware 

County, IN. Solid line represents the mean predicted abundance and shaded ribbon is the bounds 

of the 95% Prediction Intervals. 
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Figure 18. Model predicted eastern red bat (Lasiurus borealis, LABO) abundance based on 

MIBI scores. All other model covariates were held constant at their mean. Data collected on 

May-August, 2021 and 2022 from the White River in Delaware County, IN. Solid line represents 

the mean predicted abundance and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 19. Relationship between the annual Julian day and the probability of detection of eastern 

red bats (Lasiurus borealis, LABO) in Delaware County, IN in May-August, 2021 and 2022. All 

other model predictors were held constant at their mean. Solid line represents the mean 

probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 20. Relationship between the average nightly temperature and the probability of detection 

of eastern red bats (Lasiurus borealis, LABO) in Delaware County, IN in May-August, 2021 and 

2022. All other model predictors were held constant at their mean. Solid line represents the mean 

probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 21. Model predicted evening bat (Nyctecius humeralis, NYHU) abundance based on a 

gradient of riverbank canopy cover in a 1-km buffer. All other model covariates were held 

constant at their mean. Data collected on May-August, 2021 and 2022 from the White River in 

Delaware County, IN. Solid line represents the mean predicted abundance and shaded ribbon is 

the bounds of the 95% Prediction Intervals. 
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Figure 22. Model predicted evening bat (Nyctecius humeralis, NYHU) abundance based on the 

distance to closest bridge from the monitoring site. All other model covariates were held constant 

at their mean. Data collected on May-August, 2021 and 2022 from the White River in Delaware 

County, IN. Solid line represents the mean predicted abundance and shaded ribbon is the bounds 

of the 95% Prediction Intervals. 
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Figure 23. Model predicted evening bat (Nyctecius humeralis, NYHU) abundance based on 

levels of artificial light. All other model covariates were held constant at their mean. Data 

collected on May-August, 2021 and 2022 from the White River in Delaware County, IN. Solid 

line represents the mean predicted abundance and shaded ribbon is the bounds of the 95% 

Prediction Intervals. 
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Figure 24. Model predicted evening bat (Nyctecius humeralis, NYHU) abundance based on 

MIBI scores. All other model covariates were held constant at their mean. Data collected on 

May-August, 2021 and 2022 from the White River in Delaware County, IN. Solid line represents 

the mean predicted abundance and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 25. Relationship between the annual Julian date and the probability of detection of 

evening bats (Nyctecius humeralis, NYHU) in Delaware County, IN in May-August, 2021 and 

2022. All other model predictors were held constant at their mean. Solid line represents the mean 

probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 26. Relationship between the average nightly temperature and the probability of detection 

of evening bats (Nyctecius humeralis, NYHU) in Delaware County, IN in May-August, 2021 and 

2022. All other model predictors were held constant at their mean. Solid line represents the mean 

probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 27. Model predicted silver-haired bat (Lasionycterius noctivagans; LANO) abundance 

based on a gradient of riverbank canopy cover in a 1-km buffer. All other model covariates were 

held constant at their mean. Data collected on May-August, 2021 and 2022 from the White River 

in Delaware County, IN. Solid line represents the mean predicted abundance and shaded ribbon 

is the bounds of the 95% Prediction Intervals. 
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Figure 28. Model predicted silver-haired bat (Lasionycterius noctivagans; LANO) abundance 

based on levels of artificial light. All other model covariates were held constant at their mean. 

Data collected on May-August, 2021 and 2022 from the White River in Delaware County, IN. 

Solid line represents the mean predicted abundance and shaded ribbon is the bounds of the 95% 

Prediction Intervals. 
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Figure 29. Model predicted silver-haired bat (Lasionycterius noctivagans; LANO) abundance 

based on the distance to closest bridge from the monitoring site. All other model covariates were 

held constant at their mean. Data collected on May-August, 2021 and 2022 from the White River 

in Delaware County, IN. Solid line represents the mean predicted abundance and shaded ribbon 

is the bounds of the 95% Prediction Intervals. 
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Figure 30. Model predicted silver-haired bat (Lasionycterius noctivagans; LANO) abundance 

based on MIBI scores. All other model covariates were held constant at their mean. Data 

collected on May-August, 2021 and 2022 from the White River in Delaware County, IN. Solid 

line represents the mean predicted abundance and shaded ribbon is the bounds of the 95% 

Prediction Intervals. 
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Figure 31. Relationship between the annual Julian date and the probability of detection of silver-

haired bats (Lasionycterius noctivagans; LANO) in Delaware County, IN in May-August, 2021 

and 2022. All other model predictors were held constant at their mean. Solid line represents the 

mean probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 32. Relationship between the average nightly temperature and the probability of detection 

of silver-haired bats (Lasionycterius noctivagans; LANO) in Delaware County, IN in May-

August, 2021 and 2022. All other model predictors were held constant at their mean. Solid line 

represents the mean probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 33. Relationship between 2021 vs. 2022 and the probability of detection of silver-haired 

bats (Lasionycterius noctivagans; LANO) in Delaware County, IN in May-August, 2021 and 

2022. All other model predictors were held constant at their mean. Solid line represents the mean 

probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 34. Model predicted tricolored bat (Perimyotis subflavus, PESU) abundance based on a 

gradient of riverbank canopy cover in a 1-km buffer. All other model covariates were held 

constant at their mean. Data collected on May-August, 2021 and 2022 from the White River in 

Delaware County, IN. Solid line represents the mean predicted abundance and shaded ribbon is 

the bounds of the 95% Prediction Intervals. 
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Figure 35. Model predicted tricolored bat (Perimyotis subflavus, PESU) abundance based on 

levels of artificial light. All other model covariates were held constant at their mean. Data 

collected on May-August, 2021 and 2022 from the White River in Delaware County, IN. Solid 

line represents the mean predicted abundance and shaded ribbon is the bounds of the 95% 

Prediction Intervals. 
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Figure 36. Model predicted tricolored bat (Perimyotis subflavus, PESU) abundance based on the 

distance to closest bridge from the monitoring site. All other model covariates were held constant 

at their mean. Data collected on May-August, 2021 and 2022 from the White River in Delaware 

County, IN. Solid line represents the mean predicted abundance and shaded ribbon is the bounds 

of the 95% Prediction Intervals. 
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Figure 37. Model predicted tricolored bat (Perimyotis subflavus, PESU) abundance based on 

MIBI scores. All other model covariates were held constant at their mean. Data collected on 

May-August, 2021 and 2022 from the White River in Delaware County, IN. Solid line represents 

the mean predicted abundance and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 38. Relationship between the annual Julian date and the probability of detection of 

tricolored bats (Perimyotis subflavus, PESU) in Delaware County, IN in May-August, 2021 and 

2022. All other model predictors were held constant at their mean. Solid line represents the mean 

probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 39. Relationship between the average nightly temperature and the probability of detection 

of tricolored bats (Perimyotis subflavus, PESU) in Delaware County, IN in May-August, 2021 

and 2022. All other model predictors were held constant at their mean. Solid line represents the 

mean probability and shaded ribbon is the bounds of the 95% Prediction Intervals. 
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Figure 40. Relationship between 2021 vs. 2022 and the probability of detection of tricolored bats 

(Perimyotis subflavus, PESU) in Delaware County, IN in May-August, 2021 and 2022. All other 

model predictors were held constant at their mean. Solid line represents the mean probability and 

shaded ribbon is the bounds of the 95% Prediction Intervals. 
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